o
A%mj @ tﬂ" « "'--
gl n.oc

,\' -frndd(?

oﬁéﬁ" ,;w*;iﬁ;gizw ’ﬁzﬂ Eb"

A ll RS
ﬂ} lsﬂ kﬁd oL
Le Q‘i g’ y

y pursuit of computer science started small. Bored in my mlddle

school math classes, I fiddled around with my graphing calcu-
lator. At first, I looked for patterns in numbers. Next, I found

ways to compute square roots, construct Pascal’s Triangle, and
solve counting problems. As my interest in math transferred almost completely
to computer science, I started programming games, learning recursion, and
exploring graphics. Seeing how far I progressed on a clunky calculator, it’s not
hard to imagine how captivated I became when I finally started learning C++
from my dad and found out about programming competitions.

12 imagine May/Jun 2013

Learning about various famous algorithms online, I was baffled by how they
worked and how I could construct them myself. Once I got started, however,
the thrill of thinking through problems and refining my thought process

consumed me.

At the beginning of eighth grade, my brother introduced
me to the intense world of competitive programming. For high
school students in the U.S,, this centers on the USA Computing
Olympiad (USACO). Starting with the USACO training pages,
competitors learn the basics of computer science. Each year,
there are several monthly contests, dividing competitors into
Bronze, Silver, and Gold divisions. At the end of each com-
petition season, 16 students are invited to attend the USA
Invitational Computing Olympiad (USAICO), a training camp
where the top four competitors are then selected to represent
the U.S. at the International Olympiad in Informatics (IO1).

perform some operations on memory to translate input to
some desired output. There is much more involved, however,
with actually creating an algorithm and then implementing it
in code. Learning about various famous algorithms online, T
was baffled by how they worked and how I could construct
them myself. Once I got started, however, the thrill of thin king
through problems and refining my thought process consumed

me. Exploring further, I found an inexhaustible variety of

problems to practice on.
The first time I attended the USACO training camp, the
summer before my freshman year, I was still fairly intimidated

The USACO and the IOI

I soaked up all of this information with curiosity, never
expecting that I would reach further than the first few steps
of this process. Based on what I saw on the website, I found
the path to success to be incredibly daunting. Ma ny of the top
competitors had ranked internationally in math, others had
started programming at a young age, most had completed the
USACO training pages—none, it seemed, had gotten started
by playing around with a calculator. Nevertheless, T had found

a source of inspiration.

In the Company of Cows

My first year of competition was incredibly eye-opening.
Although the first problems were conceptually easy, I still
found C++ programming syntax difficult to decipher. At this
point, I was also introduced to the idea of an algorithm. In

theory, an algorithm is simple: command the computer to

tyjhu.edu/imagine

by the top competitors. Getting on a plane to Wisconsin, I was
mostly concerned with the idea of traveling, living on my own,
and meeting other students. Fortunately, at camp, competitors
are divided into two groups: Holsteins and Guernseys (lovingly
named after two breeds of cows). The Holsteins are put through
a grueling course of competition, whereas the Guernseys are
given easier contests and more lectures. At the end of camp,
only Holsteins are eligible for IOI team selection.

Even as a Guernsey, [struggled to compete against other
campers. On each contest, I found myself consistently unable
to fully solve problems. Instead, I spent most of my time
making simple optimizations, known as “hacks,” in order to
eke out partial credit. What I found far more interesting were
the lectures, which are essentially entire computer science
courses packed into a couple of days. Although I'm sure none

of the campers could claim that they completely understood

imagine

13

B — lﬂn"_ﬂ;' ALY -

h 4 SN

14

Guided by
the dedicated
organizers
and brilliant
coaches of
the USACO, I
have reached
heights that,
four years
ago, I could
not have
imagined.

I have met
competitors
from around
the world
who share my
interests and,
just as im-
portant, are
fun to interact
with.

imagine

the contents of the lectures, the key concepts stuck with
me. Of particular interest were data structures, which are
techniques for quickly storing, accessing, and querying data.
As I trained over the next few years, the techniques taught
in these lectures would reappear and steadily become easier
to understand.

Interacting with the other competitors was just as reward-
ing. I found myself immersed in an entirely different culture.
I'll never forget the experiences we had, including staying up
past midnight to play card games despite having a contest the
next day (yet still doing well!). Even today, my friends and
I still joke about mistakes we've made over the years, argue
about different styles of code, and discuss the merits of vari-

ous data structures.

Focus and Patience FTW

After two summers attending camp as a Guernsey, I was finally
promoted to a Holstein. Doing fairly well among the Holsteins,
[was invited to the IOI in Thailand, where I placed among the
top 20 and received a gold medal. Although I was proud of
my achievement, I was still struck with a sense of dissatisfac-
tion. At camp, I had resorted to using numerous hacks to get
easy points, and, at the IOL, I missed several key observations,
resulting in suboptimal solutions. I left Thailand excited by the
experience and eager to improve.

This past September at the IO1 in Italy marked the culmina-
tion of all of these efforts. After four years of experience, this
was the first time I could honestly say that I had familiarized
myself with most of the techniques that could appear. There
was, however, an issue: over time, the IOI has shifted toward
using more ad-hoc problems—unpredictable problems that
require intuition and logic more than technical knowledge.
Many of these problems have no perfect solution, requiring
creativity and flexibility to solve.

On the first day of competition, I put my well-practiced
skills to use, patiently working through one problem after
another. The most difficult problem of the day was an ad-hoc
problem that introduced an “odometer” programming language
reminiscent of Karel, which is typically taught in introductory
Java classes. The hindrance, however, was that the language
supplied only the most primitive programming operations. The
contestants were restricted to navigating a 2D grid and moving
stones around to act as counters. Without traditional program-
ming constructs like variables, loops, and functions, the tasks

became tremendously more difficult. Further, the problem was

composed of five independent subtasks and graded using a
partial-credit system. Strategically, I decided to leave it for last.

Fortunately, with focus and patience, I managed to solve
each of the problems with a small amount of time to spare.
Relieved at being able to eke out a perfect score in the last few
minutes, I walked out preparing to be chastised for my last-
minute submissions. Instead, I was greeted with cheers and
warm smiles as the only perfect scorer of the day. Incredibly, I
had managed to unseat the existing three-time champion, but it
remained to be seen whether I could repeat the feat on day two.

On day two, faced with incredible pressure to perform, my
mind was flooded with thoughts and concerns. When I finally
managed to focus my attention on the actual problems, I found
that they were less time-consuming than the previous day’s. The
problem statements, however, were unusually lengthy, which
exacerbated my anxiety. Further, tripped by simple mistakes
in my thought process, my programming took much longer
than it should have. Ultimately, after re-reading the problem
statements and sorting out my code, I walked out as one of
three perfect scorers on day two. The previous day and its seem-
ingly unremarkable odometer had proven to be the deciding
factor—I had won.

From there, my experiences were fairly anticlimactic, since
the full rankings of the IO1 are released as soon as the contest
ends. Given a few days to tour Italy and its scenery, I had time
to reflect on my experiences. Thinking about the contest, I real-
ized that the problems were of comparable difficulty to those
presented at the USACO training camp. Guided by the dedi-
cated organizers and brilliant coaches of the USACO, I have
reached heights that, four years ago, I could not have imagined.
Through two years of the 101, I have met competitors from
around the world who share my interests and, just as important,
are fun to interact with. It’s hard to say where I'll stand in this
next year of competition, but I know that the skills and friend-
ships I've developed through the USACO will last even as my

s

participation comes to an end. 1

Johnny Ho is a senior at Lynbrook High
Bl School in California and will be attending

Harvard University in the fall. In his spare

time, he enjoys playing cello, tossing a

Frisbee around, and browsing Quora.

May/Jun 2013

You might think your computer is fast and that your smart phone is smart. You might feel pretty confident that you've secured your digital

information with an unbreakable lock and key. But at universities across the country, there are computer science students who think there's

plenty of room for improvement in these and many other areas. In their research, they envision the path from what is to what is possible. Here,

four of these graduate students share their work, what led them to it, and how computer science is helping them create the future they imagine..

HUMAN-COMPUTER
INTERACTION
BY JULIA SCHWARZ

When I entered college, I was certain that I would never study com-

puter science or anything computer-related. Then, as a sophomore, 1
grudgingly took an introductory computer science course at my parents’
urging. To my surprise, writing programs felt like solving puzzles, which
I've always enjoyed, and the immediate feedback of running a program
and seeing results was quite rewarding. The following summer, I attended
Microsoft’s TechFest, where researchers show off their coolest inventions,
and students and professionals get a glimpse of the future. One project in
particular drew me in: Soap (www.patrickbaudisch.com/projects/soap), a
mouse that could easily be controlled in midair. The mouse was wrapped
in a fabric hull, and to control the pointer, the user simply needed to move
the surface (the fabric hull) along the mouse. The cleverness and elegance
of this device captivated me and planted a seed of interest in my mind that
has grown into a passion for Human-Computer Interaction.

Sitting at the intersection of several disciplines—computer science, cog-
nitive science, social science, and design—Human-Computer Interaction
(HCI) involves studying how people use computers and designing tools to
improve that interaction. My work is closer to the computer science side of
HCI and falls into two categories. First, I am working on developing new
sensing systems and interaction techniques for mobile devices. For example,
I helped develop a sensing technique called FingerSense that determines
which part of your finger you are using when touching a mobile device. This
adds a secondary input to touch, similar in function to right and left mouse
buttons. For example, you could knuckle-tap on an image or email message
to bring up a menu of options, eliminating the need for press-and-hold or
a menu bar.

The second part of my research involves developing systems for handling
different types of user input. Consider touch input: When you touch a screen
with your finger, most systems treat that contact area as a single point, but

18 imagine

it’s really larger than that. There may be bet-
ter ways—such as modeling the intended
touch as a probability distribution—to
more precisely infer what the user is
trying to touch and therefore make an
interface that more accurately and reliably
responds to the user’s intent.

What draws me to HCI is also the thing
that makes it most difficult: Because HCI
combines many disciplines, it’s not enough
to be a good programmer. A good HCI prac-
titioner must be a programmer, a designer, a
statistician, and an artist. HCI practitioners
are the Renaissance men and women of the
Information Age. And because we all interact with
computers and information on a daily basis, inno-
vation in this field is incredibly important. Just think
about how much of an impact the iPhone—a device that
popularized innovations in Human Computer Interaction—
has had on our daily lives.

I plan to continue pursuing research on new interaction techniques
for touch and in-air gesture. In the future, I hope to build and perhaps bring
to market some of the interfaces we see in movies (think Minority Report and
Cloud Atlas) in a way that is both magical and practical.

Julia Schwarz is a PhD student studying Human
Computer Interaction at Carnegie Mellon University.
She has worked as an associate researcher at Microsoft
Research and on the Xbox NUI Platform team, and is
co-founder and research director of Qeexo. She
participated in several CTY programs as a teen and
credits CTY for several key turning points in her
education.

May/Jun 24

COMPUTER SECURITY
BY J. AYO AKINYELE

My interest in computer science
was already well established by
the time I got to high school.
My older brother had majored
in computer science and
taught me how to write programs
when I was about 10 years old. I found

\ programming very exciting, primarily

because I was able to give the machine

“instructions” and it faithfully executed

them. The experience was empowering,

and to me, the possibilities with com-

puter science seemed endless. I decided

to major in computer science in college.

During my sophomore year, 1

took a course on computer security

and learned about viruses, worms, and

rootkits—and their potentially devastating

effects. These types of malicious software

can wreak havoc on a computer’s defenses,

rendering it completely useless or turning it into

a zombie, hiding any trace of the software while giv-

ing the hacker remote access to the computer. The more

[learned, the more I wanted to pursue research in this area.

In particular, [wanted to learn how to protect computer systems from

cyber attacks and how to protect user data on systems that are under

attack. This led me to pursue research in information security in graduate
school.

One of the central tools for providing information security is cryptog-
raphy. Through encryption, a message or information is transformed into
something that appears random and meaningless; only a person with a key
can decode and read the message. An analogy is a locked mailbox: anyone
can put a letter into the mailbox’s slot, but only the person with the key
can open that mailbox and access those messages. This type of encryption,
known as public key encryption, is widely used today. Online activities
such as logging in to a bank account or accessing email rely on public key

encryption behind the scenes to secure data.

One of the strengths of this type of encryption is that
each encrypted message can be opened by only one key,
but that can also be a limitation: What if you wanted to

allow several recipients to access the same data but didn’t

want to encrypt it separately for each recipient?

In my research, I have explored ways to encrypt data such

that access is determined based on whether the recipient satisfies

certain criteria. One form of this type of encryption is called attribute-

based encryption (or ABE). For instance, say Alice wants a confidential

report at her university to be accessible only to faculty in the history, com-

puter science, and psychology departments. Alice can use ABE to specify

which faculty members will be able to access the report, and those criteria

are cryptographically enforced: The private keys issued to faculty members

will work only if they are members of the departments Alice has specified,

so if they were to forward the report to someone outside their department,
that person would not be able to read it.

[am interested in using this type of encryption to protect electronic
medical records (EMRs), which are becoming widely adopted as a way to
both reduce costs and improve patient care. While EMRs must be acces-
sible to caregivers, they contain extremely sensitive information that must
be protected. I developed software that successfully implements ABE and a
prototype iPhone app that uses ABE to provide protections for EMRs. For
example, a patient’s records could be encrypted so that credentials from the
patient, doctor, or nurse are required to read the records.

Advances in cryptography like these will be critical in combating evolv-
ing information security threats in the near future. Modern cryptography is
only part of the solution, but I am excited about the diverse opportunities to
utilize it to solve practical, everyday problems.

J. Ayo Akinyele earned his BS in computer science
from Bowie State University and his MS in software
engineering from Carnegie Mellon. He is now a
fourth-year PhD student at Johns Hopkins, focusing on
applied cryptography research. Ayo enjoys playing the
drums, reading, and watching movies, football, and
basketball.

it [P

20

imagine

COMPUTATIONAL
BIOLOGY

BY KATHERINE ROMER

Biologists have long
dreamed of understand-
ing the genome: the DNA that

controls an animal’s body plan, development,

and behavior. In 2003, scientists finally managed to

get a nearly complete sequence of the human genome

(3.2 billion base pairs), at a cost of 13 years and 3 billion
dollars. Now, we can get 3.2 billion base pairs of data from a

single sequencing machine in a week—and that’s from a cheap
machine having a bad week.

e

This fast, cheap sequencing allows biologists to answer
questions about the genome more quickly, and on a much
larger scale, than we previously could have imagined. Discover
a new organism? We can sequence a large part of its genome
in a couple of weeks. Identify an interesting mutation (a fly
with white eyes, for example)? Sequencing can help us rapidly
identify genes that might be responsible.

However, to reap the benefits of sequencing technology,
we have to deal with some interesting computational chal-
lenges. Modern sequencers produce enormous quanitites of
data—a single machine churns out almost a terabyte of data
each week. Simply storing and processing our data requires
clever use of data compression and parallel processing. Then,
once we've generated and stored our sequence data, we have to
assemble it. A sequencer doesn't spit out the whole sequence
of a genome at once; it can sequence only a tiny bit at a time—
often, each sequence piece is only 20 base pairs. We get billions
and billions of these tiny pieces, and develop algorithms to put
them together into one complete sequence. Finally, once we
have completed sequences, we can use a variety of statistical
techniques to compare them to one another.

During my PhD research, I've used sequencing-based
approaches to study the mouse reproductive system, with
hopes that my work can be used to develop new birth control
methods and infertility treatments. I'm particularly interested

in new applications of
sequencing technol-
ogy to understand the
regulation of genes in
developing egg and
sperm cells. Every cell
in a mouse has the exact
same genome sequence, so
there’s no genetic difference
between a developing egg and a
developing sperm. But during devel-
opment, different sets of genes are turned on in these cells,
resulting in their different shapes, sizes, and functions. It
turns out that sequencing is a powerful tool to figure out
these regulatory differences. In particular, we can isolate the
active genes in sperm and eggs, sequence those genes, and
analyze which genes are significantly different between the
two cell types. Once we understand how a cell activates genes
to become a sperm or an egg, we might be able to copy this
gene activation program, and thus produce sperm or eggs
outside the body.
1 really like being able to apply my computer science skills
to solve biological problems. When I started college, I knew 1
loved computer science, but I wasn't sure where I wanted to
apply it. I stumbled into computational biology in my sopho-
more year of college when I got a part-time job designing a
website for a biology lab, and I got hooked. In graduate school,
I enjoy dealing with computational challenges of large-scale
DNA sequence data, and I love that I'm contributing to our
understanding of human health and disease.

Katherine Romer studied biology and
computer science as an undergraduate at
MIT and is now working on her PhD in
computational biology there. In her free
time, she enjoys gardening, church, and
square dancing.

May/Jun 2013

CHIP DEVELOPMENT
BY MAX SHULAKER

When I first arrived at
Stanford as an undergraduate,
I thought that if you wanted to
have a tangible impact on technology, industry was
the only choice. Academic research seemed impracti-
cal to me. Of course, I've since learned that I was wrong.
Now I'm a PhD candidate and spend the majority of my
time on research.

Over the course of my undergraduate education, I
noticed that engineering classes typically follow the same
outline: a week or two of introduction and background
information, followed by the bulk of the class material, end-
ing with a weeklong overview of “what’s coming up in the
future” In classes focusing on computer chips and transistors
(the devices that make up the bulk of computer chips), the
“what’s coming up in the future” always had the same punch
line: we don’t know.

Over the years, computers have become increasingly
powerful, as you have probably noticed. This increased
power is achieved by physically shrinking the transistors. The
smaller the transistors, the more we can fit onto a chip, and
thus the more computing power we get. For the past several
decades, Moore’s Law, which states that the number of tran-
sistors in integrated circuits doubles every 18 months, has
been driving the entire semiconductor industry. But we're
fast approaching a physical limitation that makes scaling
smaller increasingly difficult.

At the end of one my undergrad classes, Professor
Subhasish Mitra (who is now my advisor) discussed promising
emerging technologies that might be able to extend Moores
Law for years to come. Specifically, he was talking about the
great promise of carbon nanotubes, tubes of carbon with a
diameter approximately 10,000 times smaller than that of a
human hair. It has been shown that carbon nanotubes can be
used to make nearly ideal transistors and might be a way to
keep scaling smaller to increase computing power.

The carbon group
at Stanford, led by
Prof. Mitra and Prof.
Philip Wong, includes
about 15 students. Our
research on carbon
nanotubes ranges from
modeling the properties of
a single transistor to modeling
variations in circuits with billions of
these transistors. One of the biggest challenges of working
with carbon nanotubes is that they tend to grow randomly on
a wafer, looking much like spaghetti thrown on a plate. As you
can imagine, it’s nearly impossible to build a billion-transistor
design with such a random configuration. We've developed a
process that allows us to grow the nanotubes so they’re almost
perfectly aligned, and we've also created layout designs that
allow circuits to function despite any remaining mispositioned
carbon nanotubes.

Using everything the group has learned over the years, we
recently built a subsystem entirely out of carbon nanotube
transistors. We've even hooked up the carbon nanotube
circuit to a motorized arm to build a hand-shaking robot.
It’s a fun demonstration, and it illustrates that we're reaching
a point of maturity in this technology when we can have live
demonstrations of working circuits.

While we still can’t answer for certain what’s coming up
in the future, actively engaging in this research is one way to

help shape what that will be. i

Max Shulaker is a PhD student at
Stanford University. When he's not in
the lab, Max is either playing jazz
trumpet, knocking around a tennis ball,
or enjoying the beautiful California

weather.

|1 www.ctyjhu.edu/imagine

L

imagine Z!

In February, Wiley Publications released Minecraft for Dummies, Portable Edition, a guide for beginners and

those who want to explore some advanced features of the game. Here, the 16-year-old author of that guide

shares what got him hooked on Minecraft and how it has inspired him to new levels of creativity.

Ml
CR

HE
FT

by Jacob Cordeiro

If you enjoy games about building, survival, engineering, and adventuring, Minecraft is for you. Having attracted more

than 8 million players, Minecraft is a loose-ended yet adventurous sandbox game that becomes whatever you make of it.
—from Minecraft for Dummies, Portable Edition, by Jacob Cordeiro

I started playing Minecraft a few years ago when it was an
under-construction sandbox game. Even then, it was imme-
diately appealing. Instead of offering a static setting where
everything was pre-made and pre-determined, the game’s
algorithm generated detailed, randomized landscapes that
expanded as players explored them. Entering
the game’s world was like entering a sketch- 1

book: The world is full of minimalist trees &

x - : &
with towering blocky mountains and oceans :
throughout; even the ground is made of
cubes that you can harvest and manipulate.

I loved the simplicity, the logic, and the

open-ended experience. Instead of earn-

ing points or advancing to different

e, 8
&

levels, the only goal was to build what you liked.

For example, players could dig through underground
caves, breaking the rock into efficient formations so they
could build structures or extract resources to build powerful
gear. My first buildings—a wooden fort and a ladder up the
face of a cliff—weren't exactly majestic, but they gave me a
sense of accomplishment.

I had played lots of thought-provoking computer games,

. but I had never encountered an environment as change-
able and variable as Minecraft. I had never played a
game where I not only shaped the world that my

avatar occupied, but chose my own challenges.

5 It was a game that empowered me to create
S
: my Own game.

Creativity and Survival
After Minecraft Classic—as that early version of the game is

now called—the game offered two modes that allowed players
to interact with the world in two different ways. In Creative
mode, which retains the sandbox characteristics of Classic,
players could continue to build and explore the world according
to their own goals. The addition of redstone, a collectible “min-
eral” that can be placed like a block and arranged in such a way
that it powers mechanisms, allows players to build everything
from elevators and computers to automated improvements
such as self-managing farms in their worlds.

In Survival mode, however, manipulation of the environ-
ment is essential to your avatar’s survival. In this mode, the
game is a challenge that entails collecting resources such as
food, armor, and tools, and maintaining the health and safety
of your now-mortal avatar. Collecting and moving blocks
now requires time and the proper tools, and luxuries like
large houses and precious metals have tangible value. Along
with the addition of limited resources such as food, tools, and
minerals, Survival mode introduced the challenge of fighting
blocky monsters that roam the landscape. This mode not only
encourages creativity but requires it, as players must become

increasingly devious in the face of adversity.

Sharing Ideas, Mods, and Adventures

Activities like building a house and crafting a collection
of survival items open up opportunities to collaborate and
share interesting ideas. Some players build entire adventures
and challenges that incorporate their own assortment of
monsters or economic difficulties, which other players can
then download and attempt. I've attempted some ingenious
user-made adventures, puzzles, and challenges for surviving
in harsh conditions.

One of the biggest catalysts of this collaboration is
Multiplayer mode, which allows multiple players to create,
survive in, or adventure through the same shared world. Players
can share their ideas in a way that directly benefits their friends,
while experiencing the added challenges of sharing resources
and building a solid online economy. Residents of a shared
world can trade, team up, duel, or divide a list of tasks to make
their world grow much faster.

Minecraft’s rich gameplay derives from the intricate balance
of the world’s resources and the ingenuity of the players. Even
in the Classic version of the game, players had the ability to
program new features into the world and share these modified
or “modded” games with others. That spirit of invention and
sharing remains pervasive, and there are huge communities
and forums where players share ideas, worlds, mods, and other

relevant content.

Inspired Education
For me, Minecraft provides
inspiration that extends
beyond the game itself. I've
always had a passion for world-
building, which I have pursued
through writing, drawings, and
sketching maps, but Minecraft
is one of the best ways I've
found to express myself.
Building in both Survival and
Creative modes has given me
the mindset to build worlds
in much more detail; in fact,
my first major creative writing
project is a trilogy set in the Minecraft world.

I've also gained skills I can use to build my own games.
Minecraft allows you not only to play a game, but to design
and analyze your game experience at the same time. This
helped me realize that I really enjoy designing games, espe-
cially games that teach or are built on interesting ideas in
mathematics and science. I've built some simple games like
a block-sliding puzzle and a shooter with a counter-intuitive
spell system, and I've sketched many others, such as a defen-
sive survival game that involves controlling the evolution of
hostile creatures.

In building games based on grid formats or based on the
clever employment of resources, I've drawn from some of
the characteristics I most admire in Minecraft. The various
in-game challenges I've encountered in Minecraft (such as
building a bridge from an arrangement of limited-capacity
pistons) have inspired me to new levels of technical mastery

in my own games.

Mﬁnecmﬁ has provided me with both a creative outlet and
a community. I think this is what makes Minecraft such
an enriching and rounded experience. It is an entertaining,
open-ended game based firmly on logic and analysis, and it
has attracted a community of creators who are passionate about

exploring its unlimited possibilities. i

Jacob Cordeiro, 16, attends the Stanford
University Online High School. A math
and gaming enthusiast, he was a panelist
at the Games for Change conference in
2012. Jacob wrote Minecraft for Dummies
out of his love for inventive games, and he

hopes to design interdisciplinary games in

the future.

Cave spiders are mobs
(mobile entities) that
inhabit the Minecraft
world. Neutral in
daylight, these spiders
turn hostile and
dangerous in the dark.

oo

(%]

imagine

by Amy Dusto

When you browse Apple’s App Store or Googles Play Store, it might seem that there is an app for
everything. But when you need an app to solve a specific problem in your everyday life, you might find, as
these high school students did, that sometimes the best way to get the app you need is to develop it yourself.

ast year, Ryan Orbuch decided that the planner that his Boulder, Colorado, high school distributed to students wasn't
helping him organize his busy life. So he came up with a more useful and convenient solution, a planner app for the
iPhone that automatically pushes more pressing tasks to the front of the line and reminds users when their deadlines are

approaching. Called “Finish,” it went on sale in January for 99 cents. So far, it's been downloaded more than 24,000 times, Ryan says.

+

ﬁl& o2 day*

Ly, ot Term Today

Resemr.‘n flight price® |

or porty =

pick up desse™ ;

Tamorre?

Concer

¢ mee
‘P:O’Ea‘ml v disC
ready 1©

Finish is designed
to organize tasks
according to time-
frames the user
sets. For example,
a student could
indicate that short-
term tasks must be
complete within
two days, medium-
term tasks within
two weeks, and
long-term tasks

within a month. Then, as time goes by,
rgf_e,c-;"u'n_'-‘- 5 the app slides the tasks into the right
categories, keeping the more pressing
ones at the front. The app also lets

0"

A

users set notifications to remind them to, say,
finish their homework.

On the first day the app became avail-
able in the Apple App Store, it reached No.
2 in the productivity category; by the next morning, it was No. 1. He
sells the app under the label of the company he founded while building
it, Basil Ltd. Beyond updates and expanded features that Ryan says are in
the works, he’s planning to develop other education-related technology
projects through Basil.

The 16-year-old 11th grader had never built an app, started a busi-
ness, or done much coding before, he says. But he knew where to look
for those skills: Ryan asked his friend and classmate Michael Hansen,
a more experienced programmer, to build the prototype he designed.
They started early last fall, with Ryan handling the layout and look of
the app and Michael writing the code that directs how it works.

During the project, the two realized they each needed help. On the
coding end, Michael turned to online app development forums to figure

May/Jun 2013

=~
T

” outhow to

fix snags

in his work

when he wasn't sure

what to do. Ryan, in addi-

tion to asking all his classmates
for feedback—and later asking
them to test a not-quite-finished
version of the app before submit-

ting it to Apple—began reaching

out to experts for advice. “I'm a big
fan of Twitter. It's an incredibly valuable platform to learn
who's involved in things and ask them questions,” he says.
He also began attending any kind of technology event or
meetup he could find in his hometown—Boulder is known
for its strong community of technology entrepreneurs—to
get help from other, more experienced creators.

“You really start slowly, which is frustrating,” Ryan
says. “It took a lot longer than expected.” But once he and
Michael started to get the hang of what they were doing—
and learned where to find help when needed—the only thing
left to do was practice.

www.ctyjhu.edu/imagine

C———

anay Tanden’s “Clipped” app allows users
around the world to keep up with news
they are interested in without reading
through entire articles. The free app, which works
on Apple and Android phones and as a plugin for
the Google Chrome web browser, analyzes text to
extract the most relevant information and present it

in easy-to-digest, bullet-point summaries.

Tanay’s idea for making Clipped originated from a personal need before
he realized it could be useful to other people, too. “As a Lincoln-Douglas
debater, I was tired of reading through dozens of evidence files and high-
lighting bits of information to include in my written case,” he says. “I wanted
to write a computer program that could extract the most relevant infor-
mation from the news article or document and immediately show me the
important stuft”

To begin, Tanay, a high school sophomore, needed to write an algorithm
that could search for grammatical patterns and keyword frequencies to
identify the key parts of an article. He already knew the Java programming
language from reading a book his father gave him. To build the algorithm, he
taught himself two more languages, PHP and JavaScript,
by reading library books and following online
tutorials. e

“T've learned that making an app is a really
long process—it doesn't just happen overnight,’
he says. The biggest challenge was learning how

to design a user interface, the part of the app

used to search for news by keyword or topic,
North Korea ., ‘s

also known as the front end. Previously, all vows to test SR
Tanay’s programming experience had been long-range
ay’s prog & P rocket soon

with the back-end coding—the part of the app

that users don't see but that allows the app to
function. “I had the algorithm mostly coded,
but I wasn't sure how I wanted users to use the
mobile application,” he says.

So Tanay looked at similar apps, including
Flipboard and News.me, to help him formu-
late the best layout. He chose to create a news
feed, a web page that constantly adds
more recent articles to the top of the

screen as they become available. This

« Washington considers North Ko
rocket lests to be veiled covers |
long-range missile technology bar
the United Nations.

« The North's statement said a rocket
carrying a polar-orbiting earth observa
satellite will blast off southward from its
northwest coastal space canter.

» The United States has criticized North
Korea's pursuit of nuclear weapons and
ballistic missiles as a threat to Asian and
workd security,

N— -

imagine 25

3]

o
pri.

way, Clipped users always see the most

recent news stories from around the
world right away. “By simply scrolling
through the app, it is possible to quickly
get an idea of what is going on in the
world,” he says.

Tanay also had to meet the chal-
lenge of coding the app to display
properly on various screen sizes.
“Since there are so many different

types of Android devices, I did my

best to make the app fit on all of

them, and this was a tedious process,’
he says. Now he’s working on adding
features so the app can analyze text
from documents and research papers
in addition to news articles. He'll also
soon release an update that allows
users to customize the app to show
them news from select sources only,
like a particular website.

“It was a great feeling to see
Clipped come alive when the app
started to deliver summaries,” Tanay
says. So far, he says the app has more
than 35,000 downloads and has
translated 2.8 million news articles
into bullet points. “Getting into cod
ing is much easier than it seems,”
he says. “Just picking up a book or
following a tutorial online is enough
to get you started, and then it’s really
fulfilling to be able to create some-

thing of your own.”

imagine

PRONUNCIATION CHECKER

ifteen-year-old Richard Nehrboss built an Android app that allows people to speak into

their phones and get feedback on how well they are pronouncing a particular word. Called

“Pronunciation Checker] the app helps when learning a foreign language, but Richard was

inspired to make it to address another need.

“My little brother and a few other people I
know have difficulty pronouncing words with
sounds such as ‘ch,” he says. But gauging how
well people are pronouncing a word can vary,
depending who is giving the feedback, he says.
An unbiased computer algorithm, though, would
give them a consistent, definite measure of their
progress. When he couldn'’t find an existing app
that did this as well as he wanted it to, Richard
decided to build one himself.

Hed begun learning computer program-
ming from his father at age seven, but he didn't
start learning Java, the programming language
needed to make Android apps, until last year in
his AP Computer Science classs. He also watched
YouTube tutorials to learn how to start using
Android development software. Once he began
building Pronunciation Checker, he asked for
feedback from friends with speech impediments
to make sure the app worked well and was easy
to use.

Despite his coding background, creating the
app was still a challenge. “Sometimes even the
simplest things take forever to accomplish, but it

is vital that you don’t get discouraged and give

up,” he says. For example, after spending tens of

hours starting the project, a particular file Richard
was using suddenly stopped working and he was
forced to redo everything. “I was tempted to give
up because I couldn’t stand losing everything I
had done”

But he kept
going, and the app
launched in the
Google Play app
store in January. It
checks pronuncia-
tion for more than
30,000 words in
English, French,
Spanish, and

German.

Looking back on the process, Richard says
that he wishes hed defined a clearer plan of
action about which features he wanted to be in
the app from the start, rather than adding new
ones as he thought of them. Although the project
eventually succeeded, he says he could have done
it much more efficiently with a better plan. Then
he might have had a single database of all the
app’s settings, for example, rather than having to
create a new one for every feature he added.

“I have long been interested in computer
programming, but it was always purely for recre-
ation,” he says. “I never knew just how rewarding
it is to watch other people use and like something
you develop. I got hooked”

While he’s not sure what his college major
will be, Richard says he’s confident he'll be doing
some kind of programming. For now, he’s trying
to come up with his next app idea.

SAMSUNG
(]

| I\/Ia‘i;n

Statistics

We Are Committed to Providing Respected »
= Online Degrees. Find Out. el

2
tudying for AP science tests can be a drag—at least according to members of g
team CoffeeBeans, who built an app called “Stiidi-US” to make it more fun.
Stiidi-US provides flashcards, a game, multiple choice and free response
practice questions, and test simulations for AP science courses. The app also tracks
users’ correct and incorrect answers so that the next time they study, it can show them

more questions related to topics they need extra practice answering, says team member

Wendy Li.
Last year, Wendy and her classmates Lisa Illes, myself in
Siyao Ma, Elena Prioreschi, and Denise Leung . everything it
entered a 10-week app development contest called | has to offer”
the Technovation Challenge. They won, earn- | A junior, she
ing a $10,000 prize to help them finish the app, | has begun an AP
which they are doing with the help of professional i /1 computer science
programmers. Stiidi-US will be available first for class and says she
Android and later for Apple phones. loves it. Lisa, currently a sopho-

The girls entered the contest with little to no coding experi- more, also plans to take a coding
ence. Wendy, who was enrolled in a computer science classat ~ class in high school and enter the busi-
the time, took the lead on programming the app, while Siyao ness and technology field as a career. W >ndy,
helped gather data and Lisa helped with the design. Inaddition a senior, plans to pursue a major in electrical engineering and
o learning about coding, team CoffeeBeans also learned how computer science in college.
to create a business plan and design their app to appeal to a All the girls say that time was the biggest obstacle they
large audience, Wendy says. faced. “We had ten whole weeks—at the beginning of the
“I really didn’t comprehend all the elements that go into program, that is,” Siyao says. “Ten weeks turned to seven, then
app development, like developing a full business plan,” Siyao ~ five, before we realized we had to take time out of our already
says. “Now that I've been busy schedules to complete our task” The last two weeks before
introduced to this field, the challenge ended were stressful for everyone. Wendy recalls
I've begun to immerse frantically working to fixa bugin the code—the multiple choice

questions shed plugged in weren't loading when they

were supposed to—until she asked her computer
science teacher to help her troubleshoot. It turned
out she was missing an “if, then” clause, which,
when she added it, solved everything,
“Looking back, I think that the most
important element in making an app is
teamwork,” Siyao says. “This was most
apparent near the end when the business
side of app development was introduced;
we had to be able to communicate and rely
on each other to create a cohesive business
plan and effective pitch.”
The girls also needed to decide collectively
what to include in the app in the first place—
which ate up a lot of the team’s time getting
started, Lisa says. “I learned a lot about how 1
work independently and as part of a team in a
creative setting, which I think will be helptul

to me for the rest of my life” 1

imagine 27

